8

HIGH		
USN	JSN	

15EC63

Sixth Semester B.E. Degree Examination, Aug./Sept. 2020 **VLSI Design**

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1	a.	Explain	the ideal I.V chara	acteristics of nMOS transi	stor. Derive the equation	for I_{DS} in three
		region	i) cut off region	ii) non-saturated region	iii) saturation region.	(10 Marks)

b. Explain the nMOS fabrication with neat diagram.

(06 Marks)

OF

- 2 a. Explain the CMOS inverter transfer characteristics highlighting the regions of operations of the MOS transistor. (06 Marks)
 - b. Describe with heat sketches the fabrication of P-well CMOS inverter. (06 Marks)
 - c. Compare CMOS and bipolar technology.

(04 Marks)

Module-2

- 3 a. Draw the circuit schematic and stick diagram of CMOS 2 input NAND gate. (08 Marks)
 - b. Explain briefly λ -based design rules for wire and transistor (nMOS, PMOS, CMOS).

(08 Marks)

OR

- 4 a. Explain with diagram rise time model and fall time model of CMOS inverter. (06 Marks)
 - b. Explain briefly the circuit of inverting and non-inverting super buffer. (06 Marks)
 - c. Explain delay unit τ .

(04 Marks)

- Module-3
- 5 a. What are the most commonly used scaling models? Provide scaling factor for :
 - i) Power dissipasen per gate ii) C
 - ii) Current density
 - iii) Channel resistance Ron iv) Parasitic capacitance C_x.
- (06 Marks)
- b. What are the general considerations to be followed in designing a sub system? (05 Marks)
- c. Explain the design steps for 4-bit adder.

(05 Marks)

OR

- 6 a. Design regularity. (04 Marks)
 - b. Design 4 bit ALU to implement addition subtraction, EX-OR, EX-NOR and AND operation.
 (12 Marks)

Module-4

- 7 a. Discuss the architectural issue related to sub system design. (06 Marks)
 - b. Explain briefly a parity generator with block diagram and stick diagram.
 - c. Give the comparison of SSRAM and antifuse FPGA.

Explain with schematic view of flash based FPGA.

(04 Marks)

(06 Marks)

- (05 Marks)
- b. Explain briefly switch logic implementing of a four way multiplexer.
- (07 Marks)

c. What are the advantages of FPGA?

(04 Marks)

Module-5

9 a. Explain the three transistor dynamic RAM – cell.

(08 Marks)

b. Explain briefly nMOS Pseudo static memory cell.

(08 Marks)

OR

10 a. Explain briefly logic verification principle.

- (08 Marks)
- b. Write a short note on: i) Built In Self Test (BIST) ii) Scan Design Technology. (08 Marks)

* * * * *